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ABSTRACT

Experimental and theoretical studies of the wavelike
disturbances in an axisymmetric turbulent jet are presented. It
is demontrated that the jet can support a helical wave train with
azimuthal mode equal to or greater than unity in addition to the
plane wave mode. The disturbance wave grows rapidly along the
jet to a maximum and then decays gradually further downstream
for three modes considered, m = 0, 1 and 2. The disturbance
waves of all modes are well modelled by a wave theory with the
local properties of the wave described by a linear stability solution
of a divergent shear flow. The nonlinear development of the wave
along the jet is calculated by an energy integral method. The pre-
dicted results are in good agreement with the experimental data.

SYMBOLS

b parameter, shear layer thickness

c complex number, ¢ = /o Equation (13)

k turbulent kinetic energy, total wave number

L dissipation length

m azimuthal wave number

p pressure

q wave kinetic energy

Q wave amplitude

R radius of jet nozzle exit

t time

u,v,w velocity components in x, r, ¢-direction respectively

x,r, 60 cylindrical co-ordinates

y radial co-ordinate

o wave number

- amplification rate

8 circular frequency

5 shear layer thickness

€ turbulent dissipation

&n transformed co-ordinates for x, r respectively,
Equation (?)

€, kinematic eddy viscosity

Oy Prandt]l number for the turtulent kinetic energy
equation, Equsztion (7)

[} wave energy dissipation, Equation (3)

X complex function, Equation (15)

Superscripts Averaging Process

time mean values time averaged
«  wave fluctuation

turbulence {luctuation

1. INTRODUCTION

The coherent structure of the turbulence in a free jet has
attracted considerable interests in recent years because of its func-
tions in the generation of noise from the jet. The orderly structure
in a turbulent jet was first recognized by Mollg-Christensen in an
experimental study of the near pressure field of the jet. By meas-
uring the space-time correlation of the pressure fluctuation, he
found that the disturbance (or eddy) was convected downstream
for a considerable distance and decayed slowly.t!) A more de-
tailed study of the large-scale eddy motion was given by Crow
and Champagne.?) In their experiment a disturbance with certain
frequency was introduced into the jet and the development of
the disturbance along the jet was then followed by measuring
the velocity fluctuation. A wave system was found in the jet
and the wave length depended on the forcing frequency and the
jet velocity. The amplitude of the wave reached a maximum
and then decayed gradually downstream in accordance with
Mollg-Christensen’s observations.

In an experiment, extending Crow and Champagne’s
measurements, Chan measured the pressure fluctuations inside
a jet with external forcing.®) With a phase-averaging technique
and processing the narrow band filtered signals, he demonstrated
clearly the wavelike behaviours of the large-scale eddies. More
recently, Lau and Fisher showed the existence of the orderly
structure in a jet without forcing, using a novel experimental
techniquet4), By locking onto the spikes that appeared rather
regularly in the hot-wire signal and taking phase average the
resulting signal became sinusoidal in shape. This indicated that
the large-scale eddies have a wakelike coherent structure. For
an axisymmetric jet, the structure of the large-scale eddies can
be quite complicated as shown by Fuchs(S), By taking space-
correlation circumferentially around the jet, he decomposed
the power spectra of the fluctuating pressure into Fourier com-
ponents of azimuthal wave numbers and showed that the first
four components dominated. This suggests that the eddies are
not only translating as a plane wave along the jet but also
spiralling around the jet at the same time.

In addition to these representative works, an excellent
review of the advance of the subject up to 1974 is given by
Davies and Yule!®), An extensive bibliography is included
with the review.

Parallel to the studies of the orderly structure of the
turbulent jet the evaluation of the function of the large-scale
eddies in the generation of noise from the turbulent jet also
absorbed a large amount of research effort. It was pointed
out by Mollg-Christensen that a coherent structure would
radiate acoustic energy more effectively than a random struc-
ture(!). This concept has found its way in a number of jet
noise theories formulated in later years. In Lilley’s theory,
the wave of the shear layer was taken as the solution of the
inner source region!”). In Michalke’s expansion theory, the
multicomponents of the wave structure were incorporated
explicitly in the source functionS-8). For a supersonic jet
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both the near and the far field of the acoustic radiation were
shown, by Liu(?.1®) and Tam(!1.12) respectively, to be related
to the large-scale eddy motions. These theories in high speed
jets were substantiated by experimental measurements of
McLaughlin, Morrison and Trout(!3:14), In a less direct manner,
relating to the wavelike motion of the large eddies, Laufer,
Kaplan and Chu proposed that the rate at which these eddies
interacted with each other was the primary mechanism of the
noise generation in a subsonic jet!15),

The large-scale eddies in the turbulent jet as observed in the
experiments show that their behaviours are very much like a wave
train propagating in a shear flow. It is natural to extend Landahl’s
wave guide theory, formulated to explain the orderly structure

in a turbulent boundary layer, to the turbulent free shear flows16),

Landahl’s model has been applied by Hussain and Reynolds to
turbulent channel flows with some success(!7). For a turbulent
jet, this model has been used by Liu(9.10) for the calculation of
the near acoustic field of a two-dimensional jet and by Tam(12)
for the acoustic far field of an axisymmetric jet. More detailed
analyses for axisymmetric low speed jets were given by Morris(i8)
and Chant19.20) with emphasis on the turbulent modelling. The
calculated development of the large-scale eddies by the wave
theory was shown by Chan to be in good agreement with ex-
perimental data(2®,

In the present paper we present some new experimental re-
sults on the orderly structure of the turbulent jet. In addition to
the axisymmetric wave system, we show that a helical wave system
with the azimuthal wave number equal to or greater than unity
can also exist. The development of these waves of higher modes
are shown to be well modelled by the wave theory. This paper
deals first with the direct measurements of the helical wave in the
turbulent shear layer of the jet. Following that, it is shown how
the disturbance waves can be modelled by the stability wave
theory, and its nonlinear development along the jet is calculated.
The calculated results and the experimental data are then com-
pared and discussed in some detail.

2. MEASUREMENT OF HELICAL WAVE
DEVELOPMENT IN THE JET

2.1 Experimental Apparatus and Method

The air jet used in the experiment was generated by the low
speed jet facility of the NAE High Speed Aerodynamics Laboratory.
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The facility was carefully designed to provide a jet with low turbu-
lence and low internal noise. The details of the facility are given
in Reference 21. For the present experiment the internal diameter
of the nozzle exit was 5.7 cm. The jet was running with an exit
velocity of 76 meter per sec. nominal and the corresponding
Reynolds number of 26 X 104 based on the nozzle diameter.

A schematic drawing of the equipment set-up for the experi-
ment is shown in Figure 1. Six acoustic drivers were mounted
circumferentially around the jet with 60 degrees spacing at the
nozzle exit to provide periodic forcing at the jet boundary. Each
driver unit consisted of a 40 watt loudspeaker driver and a con-
verging duct with one end connected to the driver and the other
opened to an exit slit of 1.3 mm X 9 mm. The phase and ampli-
tude of each driver could be adjusted independently. In this ex-
periment all drivers were tuned to the same frequency with a beat
frequency oscillator, but with a phase advance between each unit
of 60 degrees in sequence, thus generating, an azimuthal mode of
m = 1. Higher modes could be similarly obtained with correspond-
ing phase advances. The forcing amplitude of the drivers was set
to 124 dB re. 0.0002 dynes/cm? at the exit of the duct with the
jet running. The development of the disturbance along the jet was
recorded by monitoring the static pressure fluctuation with two
Briiel and Kjaer 3.2 mm diameter microphones with bullet head
fairing. The pressure signals from the traversing microphones
were fed into the narrow band filters slaved to the forcing fre-
quency. The filtered signals were then used to drive the vertical
displacement of an oscilloscope. The periodic signal from the
oscillator was converted by a stroboscope unit into timing spikes
to trigger the oscilloscope intensity modulation at the required
phase. With the horizontal displacement driven by the traversing
position potentio-meter, the intensified trace now displayed the
spatial variation of the pressure signal at a fixed time. The rms
value of this signal was recorded in parallel on a level recorder.
Traverses were made with two microphones mounted one nozzle-
diameter apart symmetrically about the center-line of the jet.
This technique of experiment is similar to that described in
Reference 3 for the measurement of plane waves development in
ajet.

2.2 Experimental Results and Discussion

With this experimental set-up it was quite easy to establish
that the jet did support helical wave systems. Some typical results
of the pressure signature displayed spatially are shown in Figure 2.
For the first case, the drivers were set to generate a mode of m = 1,
the pressure waves recorded by the traversing microphones shown
in the picture are exactly 180 degree out of phase. For the second
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FIG. 1: SCHEMATIC DIAGRAM OF INSTRUMENTATION FOR THE EXPERIMENT
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m=1

f =1200, St=1.002

Vertical Scale, 1 div=1.4 X 10® dyncicm?
Horizontal Scale, 1 div=3.8cm

m=2

f = 1000, St=0.837

Vertical Scale, 1 div = 1.4 X 10% dynes/em®
Horizontal Scale, | div=1.9 cm

FIG. 2: SPATIAL PRESSURE WAVES ALONG THE JET
FOR MODES m =1 AND 2

case, the drivers were set to generate the m = 2 mode and the
pressure waves are now in phase. In both cases the waves amplify
rapidly and then decay farther downstream, with characteristics
similar to those of the plane waves3), The present experimental
results verify the theoretical analysis of Batchelor and Gill that for
an axisymmetric jet with a ‘top-hat’ velocity profile, such as the
one near the nozzle exit, all disturbances of m > 0 will be ampli-
fied22),

The wavelength of the helical wave in the direction of the jet,
X, can be measured directly from the oscilloscope traces. Because
of the thickening of the shear layer along the jet, the wavelength
increases gradually in the downstream direction. The distance
between the second and the fourth zero crossings of the wave
form is considered as the average value of the wavelength. The
total wave number along the direction of the wave helix is cal-
culated from the wave number in the x-direction, a,

kR = {m? + (aR)?} 112 (1)

where m is the azimuthal wave number and R the radius of the
nozzle. The total wave number k as a function of Strouhal
number fD/U based on the forcing frequency f, the nozzle di-
ameter D and the jet exit velocity U, is shown in Figure 3(a) for
both the m =1 and m = 2 modes. Results for the m = 0 mode,
taken from Reference 3, are also plotted for comparison. For
the same Strouhal number, the wave number increases as the
mode increases. The phase velocities of the wave in the direction
of the helix are shown in Figure 3(b). Results of the m = 0 mode
is also shown for comparison. Opposite to the trend of them =0
mode the phase velocities of the modes m = 1 and m = 2 decrease
markedly at low Strouhal numbers.

1t is shown in Figure 2 that the helical disturbance waves am-
plify and then decay in a manner similar to the plane wave case.
The spreading of the disturbances is also similar to that of the
plane wave. For high Strouhal numbers the disturbances are con-
fined within the part of the shear layer near the nozzle, while for
low Strouhal numbers they extend far into the fully developed
turbulent region in downstream. The measured rms values of the
wave disturbances along the jet for a range of Strouhal numbers
are shown in Figure 4(a) and (b) for the m = 1 and m = 2 modes
respectively. Note that the abscissa is in a normalized distance
(X/D) St and the ordinate is in a dB unit. All cases show that the
waves amplify exponentially in the initial stage, reach a maximum
and then decay gradually farther downstream. Forthem =1
mode, excep' the cases with Strouhal numbers lower than 0.25,
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FIG. 5(a): RADIAL PRESSURE AMPLITUDE DISTRIBUTIONS ACROSS THE JET,m=1 N

some similarities can be observed for the growth and decay of the
amplitude profiles. With some scattering, they all reach the same
maximum amplitude at about the same normalized distance. For
m = 2 mode, however, the regularity of the contours is less pro-
nounced. The peak values of the contours increase steadily with
the Strouhal number and approach a plateau at St = 0.67. The
peaks of the pressure amplitude for the m = 2 mode are always
lower than those of the m = 1 mode.

The variations of the pressure amplitude across the shear
layers of the jet are shown in Figure 5. The radial traverse was
taken at a station where the longitudinal amplitude reached its
maximum value. At the centre-line of the jet where the radial
traverse starts, the amplitude of the pressure wave is very low.
The amplitude increases rapidly to a maximum near the center
of the shear layer and then decays exponentially as the radial
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distance increases. For the m = 1 mode, except in two cases of
low Strouhal number, the contours show striking similarity in
shape. For the m = 2 mode, the results are more scattered and
less regular. The peak values of the contour again increase with
the Strouhal number and flattens off at higher Strouhal numbers.
It is interesting to note that for both modes the disturbance does
vanish at the centre of the jet, as required by the physical con-
sideration of a helical wave.

The direct measurements of the development of the helical
disturbance waves in the jet present here show that the large-scale
wavelike eddies in a turbulent jet can have modes higher than
m = 0, L.e. a plane wave. These results are consistent with Fuchs’
experiment, which showed that the turbulence in the jet can be
resolved into azimuthal Fourier components and that the first
four components dominate!S).
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3. CALCULATION OF HELICAL WAVE

DEVELOPMENT IN A JET

It has been shown by several authors that the large-scale
wavelike eddies in the turbulent jet can be well modelled by the
wave-guide theory of Landahl(9.10,12,18.19), These theoretical
analyses follow closely the nonlinear theory of hydrodynamic
stability developed for laminar shear flows. For a highly nonlinear
process, an exact analysis is difficult, however, the development
of the wave and its interaction with the mean and the turbulent
flow can bhe examined globally by considering the energy transfer
in the shear layer. The energy method for the nonlinear stability
analysis was first formulated by Stuart(23), The method was
advanced by Ko, Kubota and Lees in an analysis of the nonlinear
stability of a laminar wake(24), Its application to the analysis of
stability waves in a turbulent wake was demonstrated by Liu(25),

In a detailed analysis of a plane wave propagating in an axisym-
metric turbulent jet, the method was applied by Chan to calculate
the growth and decay of the wave. His theoretical results agreed
well with experimental data(20),

2.2 Formulation

The fundamental equations governing the problem can be
derived from the Navier-Stokes equations and the continuity
equation. For the present application to an axisymmetric jet, a
cylindrical polar co-ordinate system is used. The physical variable
are normalized by the length dimension R, radius of the jet nozzle
and the velocity U, exit velocity of the jet. In deriving the equa-
tions, both the turbulent fluctuation and the wave disturbance are
considered to be small compared with the mean flow quantities.
Thus the velocity components and the pressure can be split into
three components, namely, the steady mean flow, the disturbance
wave fluctuation and the turbulent fluctuation
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u=u+i+u
... (2)

+p+p

=1}

p=

The mean flow equations are derived by first taking the phase aver-
age and then the time average of the Navier-Stokes equation. The
wave-component equations are then obtained by subtracting the
phase-averaged equations from the time-averaged mean flow equa-
tions. The kinetic energy equations are derived by multiplying the
Navier-Stokes equations by the corresponding velocity compo-
nents and then taking averages. Boundary-layer approximation is
applied throughout the derivation and for turbulent flow, the
effect of molecular viscosity is neglected. The flow is considered
to be incompressible. The details of the derivation of the equa-
tions are given in Reference 20.

The resulting equations for the present analysis by the energy
method are the kinetic energy equations of the mean flow, the
turbulent fluctuation and the wave disturbance;

S0U2 w2 A L
ax | or o %
1 ¢ g/ wow g
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— a—
+ Uy et

where k is the turbulent kinetic energy and q the wave kinetic
energy. The cascading process of energy transfer in a turbulent
shear flow can now be seen from these equations. The kinetic
energy of the mean flow is extracted by the growth of the wave
and the production of turbulence as represented by the first two
terms at the right hand side of the mean flow energy equation.
These two terms then appear as energy sources in the turbulence
and the wave energy equations. The energy in the wave is then
transferred further to the turbulence, with the dissipation function ¢
being negative in the wave equation and positive in the turbulence
equation. The last step causes the decay of the wave and an
increment of the turbulent energy.

In the energy method of analysis, these equations are solved
by an integral method. The correlation functions required for the
integral formulation, those of the mean and the turbulent flows of
the jet, are calculated numerically by a finite difference method.
Those of the wave fluctuations are obtained from a linear stability
theory of a divergent shear flow. The solutions of the mean and
the turbulent flows and the solutions of the stability wave re-
quired for the evaluation of the correlation functions are now
calculated in the following two sections:

3.2 Mean Flow Calculation

The governing equations for the mean flow of the jet are the
continuity and the x-momentum equations. As a first approxima-
tion the contributions from the wave disturbance is neglected.

ol 1 o
—— o — e = )
ox r dr
4)
_9u  _ou 1 ar(-uv)
U +7>— = =
ox r r or
For an axisymmetric jet, the boundary conditions are as
ou
— =0 at r=20
or
(5)
u->0 as r - o

Turbulent kinetic energy distributions inside the jet are re-
quired to evaluate the correlation functions for the integral
formulation. The turbulent kinetic energy equation should there-
fore be solved simultaneously with the mean flow equations. This
equation is written, excluding the wave energy source term, as

U — +V —=

_ok _9dk l
ox ar r

d (= —=, 0u
— (VETR) r V) = e @)

with the boundary conditions

3k
— =0 t r=0
ar al r

k-0 as 1 > o°

Methods for computing free turbulent shear flows are well
developed(26), For the present case, the Prandtl’s energy model is
adopted (27). In this model, an eddy viscosity is assumed for the
closure of the Reynolds stress, and the turbulent velocity-pressure
correlation is taken as a gradient diffusion. This model is written
as follows:

J—— ou ———— & 0k
=c k128  -uV =€ —, Vi(p'+k)=-— —,
T oY ' or B +k) o, Or
k312 ™
€ =¢y—, 6 =15y - 1
Ry 0.3 0.9

where ¢, and c, are empirical constants and oy the Prandtl num-
ber for the energy equation. Both the length scale £ and the
dissipation length L are taken to be the thickness § of the shear
layer. The empirical input for the calculation are as follows:
¢; = 005 ¢, = 1.50; o = 070; 2 =L =26

A modified von Mises transformation is then applied to the
equations. With this transformation the spreading of the jet in
the lateral direction is much smaller than that in the physical co-
ordinate and is thus easier to handle in the numerical calculation.
The transformation(28)

N P L

satisfies the continuity equation automatically

)
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The momentum and the turbulent kinetic energy equations
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with the boundary conditions

_0_1_1__0 ak‘O t n=0
an *an am=

(11
u—>0, k>0 as g

These equations with the boundary conditions are solved nu-
merically by an implicit finite difference method. Because of the
nonlinear coupling of these two equations, an iterative scheme is
used for the solutions. The momentum equation is first integrated
with an assumed distribution of turbulent kinetic energy and the
resulting velocity distribution is used for the solution of the tur-
bulent kinetic energy equation. The new kinetic energy profile
replaces the assumed one and the process continues until the solu-
tion converges to satisfy a pre-set criterion.

The nonlinear momentum equation is first linearized in a
form suitable for an iterative calculation. The equation is then
written into a finite difference form resulting in a system of linear
algebraic equations which can be solved by an elimination method.
The energy equation is weakly nonlinear and can be solved in a
similar manner. The details of the numerical analysis are given in
Reference 20.

With the mean flow development of the jet calculated, the
resulting mean velocity and kinetic energy profiles are used to
evaluate the correlation functions of the mean and the turbulent
flow energy balances for the integral formulation of the nonlinear
wave process. The mean velocity profile is also used for the cal-
culation of the wave functions presented in the next section.

3.3 Stability Wave Calculations

The correlation functions of the wave disturbance are calcu-
lated from the linear stability solutions of the local shear flow.
This may be the closest approximation that can be assumed with-
out additional information from further experiments or exact
nonlinear solutions. The inviscid forms of the linear stability
equations are used in the present calculations. This is a reasonable
approximation for high turbulent Reynolds number flows. The
continuity and the momentum equations for the wave disturb-
ances are as follows:

ou 1 orv 1 oW
— 4+ +
9x r dr r 06
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For a turbulent free jet the shear layer is not parallel to but
diverges rapidly away from the jet axis. To take into account the
divergency of the shear layer a transformation of the radial co-
ordinate r is introduced,

r-1

b(x)

y =

where b(x) is a function of x and can be set equal to the thickness
of the shear layer §. For a single Fourier component of the wave
disturbance a wave form solution is sought,

{59, 9,8} = {a), ¥, W), 890 } exp [i(S aoax - g+ m))
(13)

where a(x) is a complex function of x, the real part being the wave
number and the negative imaginary part the amplification rate, § is
the circular frequency and m the azimuthal wave number. Substi-
tuting Equation (13) into the governing equations a system of
equations depending only on the radial co-ordinate y is obtained:

. x 200 .
i(AG~ Byu+v— =-jAp
dy

o o a_ dp
i(AG~ B)v=- —

dy
(14)

A
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a1 drv MW
iAut— — +— =0
r dy r

where A = ab, B = b and M = mb. The mean flow solutions show
that db/dx is an order of magnitude less than unity, thus in deriving
Equation (14) the terms containing db/dx are neglected. This sys-
tem of equations resembles closely that of the parallel flow, except
that the wave numbers and the frequency are now multiples of the
shear layer thickness b(x). The system of equation can be further
simplified to the following form:

M2
d ATy 1d
X _ r u r
——= =- A2(U-¢)+ ~—1 +—= — { (15)

a @-*xjz ¢ X A? dy r dy

P B

where =-jA 5 and c=—

v A

The mean velocity gradients vanish at the edge of the shear
layer. Thus the asymptotic solutions provide the required bound-
ary conditions:

(.)=_A(ﬁ_c)£rﬂ(Ar—j/b) y-—)y
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K (Ara/b) R (16
X=)= A B S A Tb) M ing A

where I;, and K, are modified Bessel functions. Equation (15)
with boundary conditions, Equation (16), form an eigenvalue
problem. The local wave number A is the eigenvalue to be cal-
culated for a given frequency B at each station along the jet with
a specified mean velocity distribution. To solve this eigenvalue
problem, an iterative scheme is used??). By assuming an eigen-
value A, the boundary values can be calculated from Equation (16)
and Equation (15) is then integrated numerically from both sides
of the shear layer towards the center. It is required that at the
point where these integrations meet, the values of x approaching
from both sides should be the same. With the eigenvalue known,
the eigenfunctions can be calculated from Equation (14).

For the present calculation, with the comparison with the
experimental data in mind, the frequency § is chosen to be 1.5
(St = 0.477). The eigenvalue and the eigenfunctions are calcu-
lated at a number of stations along the jet axis. The mean velocity
gradients at these stations are taken from the solutions of the
mean flow obtained in the last section. The local values of the
eigenvalues, the wave number o, and the amplification rate - ¢;,
are plotted against the parameter 8 (or b) in Figure 6. The local
values of phase velocity are also shown in the figure. Three azi-
muthal modes are calculated. In general, the wave number
increases steeply with 8, reaching a maximum and then decreases
gradually. The amplification rate decreases monotonically ex-
cept near the very first portion of the jet. As the order of the
mode increases, the wave number increases and the correspond-
ing phase velocity decreases. The amplification rate decreases
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more rapidly for the higher modes and the extent of the jet at
which the amplification rate is positive diminishes. The small
difference between the wave numbers of the plane wave (m = 0)
and that of the two helical modes is consistent with the experi-
mental data presented in Figure 3.

3.0

FIG. 6: LOCAL WAVE NUMBERS, AMPLIFICATION RATES
AND PHASE VELOCITIES AS FUNCTIONS OF 6
FOR MODES m =0, 1 AND 2

3.4 Energy Integral Method for Nonlinear Wave Process

The nonlinear development of a wave disturbance in the shear
layer of a jet is now analyzed by the consideration of the kinetic
energy balances in the mean flow, the turbulent fluctuation and
the wave fluctuation. With the mean flow continuity equation,
the mean velocity component v can be eliminated from the govern-
ing equations, Equation (3), which are then integrated across the
shear layer. By applying the proper boundary conditions at the
edges of the shear layer and noting that the diffusion terms in
these equations represent only a redistribution of energy in the
shear layer and thus drop out in the integration, the integral
energy equations are:

1 d
2

N rdr=- (" T e (P can 2
= oul'r fo(uv)arrr fo(uv)ar rdr

d —. 0T
— [P kirdr=/® (-uV)— rdr- " exdr + " ¢rar amn
dx "o o or 0 o

d — A
- foh qardr = [* (&) 5;1 rdr- " g
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Three parameters are chosen as unknowns; the shear layer
thickness § for the mean flow, the averaged turbulent kinetic
energy integral k, for the turbulent flow and the wave amplitude
Q for the wave disturbance. The wave disturbance is assumed to
be of the form

{8,%, %5} = Qe { (b, ), ¥(b, y), ¥ (b, y), Bib, y) }
exp [i(f o, (x)dx - Pt + mO)]

where Q(x) is the amplitude of the wave. The lateral distribution
of the wave functions are assumed to be identical to the linear
stability solutions of the local divergent shear layer calculated in
Section 3.3. The local wave number ¢, is also taken from the
linear solutions. The form of Equation (18) also implies that the
higher harmonics are neglected.

(18)

The averaged turbulent kinetic energy integral is defined as

k =

2 ny 9
. — 7 ) Ko (19)

1,2

with the kinetic energy distribution across the shear layer written
as:
k(r) = k, G(r) (20)
The model of the turbulence for the present formulation is
the same as the one used in the mean flow calculation and given in
Equation (17). With this model the correlation functions involving
only the mean and turbulent flows can be evaluated without diffi-

culty. Form the mean flow solutions of the jet the following
integrals

I, = "W rdr

0

ou\?
I, =8 Gin —) d
3 fo (ar rar
(21)

i
Ig = — /" Gurdr

& o

1w
I, = = ["G32rdr

& o

are calculated and plotted in Figure 7 against the parameter 5. The
averaged turbulent kinetic energy integral defined in Equation (19)
is also shown. It is noted that the integral k, varies only slightly
over the range of § consider. Thus the correlation integrals can be
considered as function of § only.

Three correlation integrals involve wave functions,

L= e
= V) — r
2 ° oy y
I, = [" qlirdy 22)
0
I, = /" ¢rdy
0
The first two integrals can be evaluated from the stability
wave solutions as follows:
R2 h A A A A aﬁ 5
I, =Q2| - > 7 r(uv, +uivi)5- dy| = Q2F,(8)
° y (23)

RZ A A A A A
I = Q? {‘4— S r[(u,2 +02)+ (9,2 +92) + (W2 +wi2)] ﬁdy}
O

=Q2F4(5)
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where the subscripts r and i denote the real and the imaginary
parts respectively. The normalizing factor R2 in the integrals is
due to the fact that the linear stability solutions are determined
up to an arbitrary coefficient of a constant value. In the calcula-
tions in Section 3.3 this constant is taken to be unity. In the non-
linear analysis this coefficient is included in the amplitude Q(x).
To determine the value of the factor R2 we set the kinetic energy
integral of the wave function equal to |Q|2.

Q2R?

IQI2 = /" qry = Iy (24)
]
l. = h Ay Ao A2 A ) A o
where g = [l +u2) (92 492)+ (W, 2 +W2) | dy
O
4

R? = =
Iy

Thus (25)

The integral I is an integration of the dissipation function ¢,
which expresses the energy transfer from the wave disturbance to
the small scale turbulence and the diffusion due to wave-
turbulence interaction. The full expression of this function ¢is
given in Reference 20. The function consists of terms with phase-
averaged second correlations of turbulent fluctuating quantities,
Similar to the closure requirement for the time-averaged turbulent
quantities, a closure relation has to be assumed for these phase-
averaged “Reynolds stresses” in order to complete the formula-
tion. In Reference 20, following Hussian and Reynolds, these
stresses are assumed to be related to the rate of strain of the wave
fluctuation, with the local eddy viscosity as the proportional
constant!!7). The eddy viscosity is assumed to be identical to
that used in the mean flow calculation. Based on this assump-

tion, the dissipation function can be reduced to the following
form(20),

o= (2"‘_>2+(§’_>2+(6v“v)2+<aﬁ 2 fav\? faw) 2
! 9x ox 0x ar * 5—; * g—
(1 aa)2 (1 Ww\2% (1 aw\?2 (26)
+H{——}) +|——] +[~—
r a0 r 00 r 96

With the dissipation function ¢ in the form of Equation (26) the
integral I can be evaluated and the formulation is then complete.
The calculation of a plane wave development with this closure
assumption shows excellent agreement with the experimental
data®9), An extension of the calculations to higher azimuthal
modes, i.e. m =1 and m = 2, however, is not as successful?9),
The dissipation integrals for these cases increase at a tremendous
rate along the jet, causing a rapid decay of the wave disturbance.
The experimental measurements presented in Section 2, however,
do not indicate this rapid rate of decay. The discrepancy is
attributed to the fact that for the higher azimuthal modes, the
calculated azimuthal derivatives which are directly proportional
to m, are unduly large.

Since the wave energy dissipation is mainly due to the
turbulence-wave interaction, the expression given in Equation (26),
although it may not represent the physical process correctly, shows
properly the dimensions of the quantities involved. The contribu-
tion for the dissipation by the turbulence is through the eddy vis-
cosity, which is defined by the rms value of the turbulence velocity
fluctuation and a turbulence length scale. The contribution from
the wave is proportional directly to the wave kinetic energy and
inversely to the square of a length scale. Following the dissipation
model used in the turbulence calculation, Equation (7), the
dissipation function ¢ is now given the following form:

_ kif2q
¢ =cy 5 (27)
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FIG. 8: CORRELATION FUNCTIONS FOR THE WAVE
KINETIC ENERGY EQUATION OF MODES m =0, 1 AND 2
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where the length scale is set equal to the thickness of the shear
layer and c¢; is a proportional constant. By comparing results
calculated with this model for a plane wave and those calculated
with Equation (26) the constant c; is determined to a value of
3.67. This constant, like the other constants ¢; and c,, should
be considered as universal for all other modes.

With the function ¢ in the form Equation (27), the integral
I5 can be evaluated as

IS =C3ka{

+(W,2 +€v12)] rdy] = ¢;k, Q2 F5(3)

Q2R2

AR [@2+62)+d,2+82)
0

The integrals F,, F,, F5 are calculated from the linear wave
solutions and the results are shown in Figure 8 as function of §
for three modes. The figure shows that the energy production
integral F, increases rapidly and after reaching a maximum, de-
creases 10 zero. As the mode increases, the integral decreases and
drops off to zero more quickly. The dissipation integral F varies
only slightly over the range considered and the values increase
only a small amount as the mode increases.

With the correlation integral evaluated, the energy integral
equations, Equation (17), can be solved for the parameter b, k,
and Q. These equations are integrated from an initial station with
specified initial conditions. For the present calculations the inte-
gration starts at x = 0.2 with the initial conditions as

6 = 01490, k, = 0.0257
obtained from the mean flow calculations without wave disturb-
ance. In addition, the initial value of the wave kinetic energy

integral K, is specified and this quantity is related to the strength
of the initial wave disturbance.

4. RESULTS AND DISCUSSIONS

With the method described above the energy transfer in the
jet can be calculated in detail. For the initial portion of the jet the
production of the wave kinetic energy is much greater than the
dissipation. The corresponding pattern for the wave kinetic ener-
gy is a rapid increase to a maximum, where production and dissi-
pation are of equal magnitude, followed by a gradual decay.

The wave energy dissipated by the turbulence appears as an
energy source to the turbulence itself. For a large wave disturb-
ance the energy transfer from the wave to the turbulence is of the
same order of magnitude as that of the background turbulence.
The sharp increment of turbulent energy results in the enhance-
ment of mixing and spreading of the jet.

The growth of the pressure wave in the centre of the shear
layer, r = 1, for all three modes are shown in Figure 9. The
experimental data for m =1 and 2 modes are taken from Section 2
and for m = 0 mode from the plane wave experiment®), The
magnitude of the initial disturbance used in the calculations was
set equal to the strength of the forcing induced into the jet in the
experimental program. The scale of the pressure ratio is in dB
unit for convenient comparison with experimental data. For all
three modes the calculated results agree very well with the ex-
perimental data over the range considered. Comparisons of the
radial pressure distribution data and the calculated results are
shown in Figure 10. The calculated results are again in good
agreement with the experimental data for all three modes. The
experimental data showed extend from the potential core to
the near field of the jet, while the theoretical results covers only
the width of the shear layer.
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FIG. 9: CALCULATED GROWTH OF THE PRESSURE WAVE
AMPLITUDES IN COMPARISON WITH EXPERIMENTAL
DATA FORMODESm=0,1 AND 2
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FIG. 10: CALCULATED RADIAL DISTRIBUTION OF THE
PRESSURE WAVE AMPLITUDES IN COMPARISON WITH
EXPERIMENTAL DATA FOR MODES m = 0,1 AND 2

Both theory and experiment show that the initial amplifica-
tion of the wave for all three modes is very much the same.
However, the maximum of the pressure amplitude decreases as
the mode increases due to the lowering of energy production for
the higher modes (see Fig. 8). The extent of the wave propaga-
tion along the jet is also reduced for the higher modes. The
present results are consistent with the experimental observations
by Fuchs, that for the turbulence in an axisymmetric jet the first
four azimuthal Fourier components dominate and their magni-
tudes decrease in sequence as the order increases.(S)
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In conclusion, we have shown both experimentally and
theoretically that an axisymmetric turbulent jet can support in
addition to the plane wave mode, a helical wave train with the
azimuthal mode equal to or greater than unity. The disturbance
wave grows rapidly along the jet to a maximum and then decays
gradually farther downstream. The amplitude of the wave de-
creases as the mode increases and the extent of the wave propa-
gation along the jet is also reduced for the higher modes. The
wave numbers in the direction of the jet, however, differ only
slightly for all three modes considered. These disturbances of
all modes are well modelled by a wave theory in which the local

properties of the wave propagation is described by a linear stability

solution of a divergent shear flow. The development of the waves
along the jet can be calculated by an energy integral method,
which is based on the global consideration of the energy transfer
taking place in the shear layer between the mean flow, the tur-
bulence and the wave disturbance,
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